Meiosis Unit

Part 1: Are They Really Twins?

Unit: Standard BIO.3.3	Utah SEEd Standard / NGSS Performance Expectation:	Time:
Genetic Patterns	Engage in argument from evidence that inheritable genetic variation is caused during the formation of gametes. Emphasize that genetic variation may be caused by epigenetics, during meiosis from new genetic combinations, or viable mutations. (LS3.B)	80-90 minutes
	NGSS Correlation: HS-LS3-2	

Link Meiosis Unit Part 2: <u>https://3drst.byu.edu/bio-3-3-meiosis</u> Link to Meiosis Unit Part 3: <u>https://3drst.byu.edu/bio-3-3-chromosome-crossover</u>

Anchor Phenomenon	Variation between fraternal twin siblings
Driving Question(s)	What causes variation between siblings in families? Why do we see vast amounts of variation from the same two parents?
Performance Task	HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors

@@@@

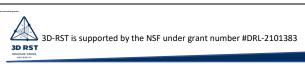
Lesson Summary:			
	Time	Guiding Question / Learning Objective	How are students answering the guiding question or meeting the learning objective?
⊗ ⊗−⊗ Engage	15 minutes	What causes siblings to have different appearances? Why do we see vast amounts of variation from the same two parents?	Students formulate questions from prior knowledge, experience, curiosity, etc., to explore the cause and effect of genes and inheritance.
Explore	45 minutes	Offspring get traits from their parents through a mix of genetic information	Students visualize the variation that occurs when they "mix" genes during a class activity. Students compare differences amongst their peers to see the variation amongst "species."
Explain	10 minutes	The genetic makeup of an individual is composed of half of the genetic information from each parent.	Students discuss findings and reach a consensus regarding explaining what may cause siblings (or twins) to have different looks.
Elaborate	10 minutes	Siblings inherit different portions of genetic information from each parent which may result in different phenotypes (e.g., appearances)	Given more information about the family, students identify additional evidence that supports their claim (explanation) of the original information.
Evaluate	5 minutes	What causes siblings to have different appearances? Why do we see vast amounts of variation from the same two parents?	Use the rubric provided with this lesson to have students conduct peer- evaluations of the claim, evidence, and reasoning and/or the instructor uses the rubric to evaluate student learning.

Three Dimensions Focused on in This Lesson			
SS Appendix E ation of TraitsNGSS (1) En Make about design about design and stinformation passed from parents to offspring is ed in the DNA molecules that form the omosomes. In sexual reproduction, chromosomes sometimes swap sections during the process of osis (cell division), thereby creating new genetic abinations and thus more genetic variation. Although A replication is tightly regulated and remarkably urate, errors do occur and result in mutations, which also a source of genetic variation. EnvironmentalNGSS (1) En Make about design and st (2) De Devel mather to sup	Acce and Engineering Practices: S Appendix F magging in Argument From Evidence: 9-12 and defend a claim based on evidence the natural world or the effectiveness of a n solution that reflects scientific knowledge tudent-generated evidence. Eveloping and Using Models: 9-12 op and/or use a model (including ematical and computational) to generate data oport explanations, predict phenomena, ze systems, and/or solve problems.	Crosscutting Concept: <u>NGSS Appendix G</u> <u>Cause and Effect: 9-12</u> Students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects.	

Learning Objectives

- DCI: Students will explain that variations of traits occur from chromosomes that are passed down from parents to offspring by the formation of gametes during meiosis.
- **SEP:** Students will model and form inferences about genetic variations using pedigree charts to support their argument.
- CCC: Students will be able to show that genetic variation is a direct result of traits passed from parent to offspring BECAUSE of gamete formation in meiosis.

Related Knowledge and Skills from Prior Grades


Disciplinary Core Idea:	Science and Engineering Practices:	Crosscutting Concept:
NGSS Appendix E	NGSS Appendix F	NGSS Appendix G
(LS3.B) 6-8	1) Engaging in Argument from Evidence: 6-8	Cause and Effect: 6-8
In sexual reproduction, each parent contributes half of the	Construct, use, and/or present an oral and written	Students classify relationships as causal or
genes acquired by the offspring resulting in variation between	argument supported by empirical evidence and scientific	correlational and recognize that correlation does not
parent and offspring. Genetic information can be altered	reasoning to support or refute an explanation or a model	necessarily imply causation. They use cause and
because of mutations, which may result in beneficial,	for a phenomenon or a solution to a problem.	effect relationships to predict phenomena in natural or
negative, or no change to proteins in or traits of an organism		designed systems. They also understand that
	(2) Developing and Using Models:6-8	phenomena may have more than one cause, and
	Develop a model to describe unobservable	some cause and effect relationships in systems can
	mechanisms.	only be described using probability.

Materials Link to all materials on the 3DRST website (<u>3drst.byu.edu</u>): <u>https://3drst.byu.edu/heredity</u> Link to all materials on Canvas Commons: <u>https://tinyurl.com/3DRSTbiology</u>		
Student Pedigree Worksheet Student Pedigree Chart	 Gummy bears (6 of each parent) Tip: Pre-sort colors to reduce loss of class time Dissection Scissors (works best) or scalpels or razor blades (to cut gummy bears) Tip: Count how many are handed out and collect at the end of class Cutting boards Plates, bowls, or plastic bags to hold gummy bears Padlet, sticky notes, or whiteboards with markers Colored pencils 	Heredity PowerPoint slides Genetic recombination info sheet Grading rubric

ENGAGE What causes variation between siblings in families?		
 Show students 1st picture (brother/sister twins – slide 1) – DO NOT tell students the relationship between persons in the photos! Teacher: "Please write 2 observations & 1 inference about these two people." Students: Make 1-2 observations & 1 inference (~2 min) Short small group/partner discussion Teacher: "What are some of your observations? What are some of your inferences?" Follow up with, "What do you wonder about this picture?" (Be sure to get answers from each group) 	You may want to find pictures of twins appropriate for your student's culture/community. Ideas for collecting and sharing ideas: Padlet, sticky notes, or whiteboard(s); different colored sticky notes—one for observations and one for inferences— works well.	
 3. Show students the 2nd picture (dark/red-hair twins -slide 2) Teacher: "Please write 2 observations and 1 inference about these two people." Students make 1-2 observations & 1 inference. (<u>~2 min</u>) 		

	1
 4. Short small group/partner discussion Teacher: "What are some of your observations? What are some of your inferences?" Follow up with, "What do you wonder about this picture?" 	The following sentence frames may support students who struggle to describe their photo observations and inferences:
 5. Show students the third picture (identical twins – slide 3) Teacher: "Please write 2 observations and 1 inference about these two people." Students make 1-2 observations &1 inference. (~2 min) 	 I think the two people are because . The two people have different
 6. Short small group/partner discussion Teacher: "What are some of your observations? What are some of your inferences?" Follow up with, "What do you wonder about this picture?" 	3. The two people have similar They both appear
 7. Show slide with the collage of the three photos – Slide 4 Teacher: "Which of these images shows a set of siblings? Please describe at least two pieces of evidence for your inference." Discussions with partner/small groups and class Teacher: "Let's make the CLAIM that all three of these pictures have a set of siblings. No adoptions, same set of parents, no stepchildren, etc." Teacher: "Now that you know they are siblings, what do you wonder?" 	
Short Group Writing/discussion about what they wonder. Specifically, target individual students using the scientific language of inheritance of traits being passed on to offspring. Select several students to state what they wonder.	
 Note: Student musings/questions may include or be guided to: How can these two girls look so different (girl twins)? Why do some families all look like their mom (or dad)? Does that mean they get more DNA from one parent? 	Alternatively, or in addition to asking students what they wonder, ask students to find the evidence (observations) that supports or opposes this claim.
 8. Teacher: collect students' questions Based on students' questions, develop a driving question such as: "What caused these siblings to have such different appearances (effect)?" "Why can we see a wide amount of variation from the same two parents?" "What does variation look like in your family?" "What causes variation between siblings in families?" 	Listen for and foster student conversations relating to prior experiences with siblings and twins.
"We're going to explore this cause-and-effect relationship (today)."	

EXPLORE

Offspring get traits from their parents through a mix of genetic information.

Emphasis: Engaging in argument from evidence & developing & using models	
• Before the activity, prep gummy bears by separating all the colors and placing 6 of each color in separate plastic	Teacher Tips:
bags. Make enough bags for each pair or small group of students to have two different color bags.	Keep a few of each color in a teacher bag
Put students into small groups (such as pairs) and hand out gummy bears.	to hand out if students need extra;
Have students read instructions on <u>Student Pedigree Worksheet</u> and follow the procedures.	students may also need to trade.
 Students will only need one pedigree per group as found on this link: <u>Student Pedigree Chart</u> 	(Students could answer these questions
Toppher: Ack and have students answer these questions on their student worksheet:	from page one in their journal if teacher
Teacher: Ask and have students answer these questions on their student worksheet: How much genetic information comes from each parent?	doesn't wish to copy the student
 When offspring look more like one parent, does that mean they got more DNA from that 	worksheets for students.)
parent? Explain.	
	The last two slides on the PowerPoint
Part 1 First generation mating – Slide 6	offer a simple demonstration on how to
Procedure for F1	create each generation and switch with
• Students: Choose one of each color given to represent the parents (P). Predict what the children will look like	another group.
if they get $\frac{1}{2}$ traits from the (P-generation)	
• Students cut one of each of the parent color gummy bears in half to create "offspring" with half of each of the	Students can choose any parts of the
parent's DNA.	gummy bear for each half. (e.g., head,
 Teacher: "Now that you have made the F1 generation, create a claim using evidence as to how this 	legs, arm)—they are not required to cut
represents ½ traits from both parents on your lab sheet."	them down the middle.
Part 2 (Second generation mating) – Slide 7	Ask students to explain their reasoning
Procedure for F2	behind why they are cutting bears or
1. Students select just one of their offspring in the F1 generation and make a copy of it.	putting them together the way they are.
2. Take a solid color of each gummy bear from their P generation and trade the parents and offspring gummy	Look for interesting ways students have
bear with another group.	modeled $\frac{1}{2}$ traits.
 Take the bears from another group's F1 generation and predict what their F2 generation will look like if mated to their F1 bear. 	Use them to take the discussion to the next level.
Teacher: Look for students thinking deeper in their assembly of the bear traits to be used as examples (e.g., ears of	
one, arm of another, etc.) Discuss the reasoning for why bears were put together the way they were. Use examples	
of students who thought deeper to engage higher-level thinking and discuss how traits are given from parents but	
displayed very differently.	
• Have students explain using evidence how the variation of traits in the F2 generation comes from the parents in	
the F1 but still shows traits from the original P generation.	

Part 3: F3 Challenge (slide 8)	Access for English Language Learners & Remedial Learners
• Teacher: Show the picture of the colored bear on slide 8. Challenge students to take one of their F2 bears and	1. Read procedures with individual
predict what their children would look like if they mated with the bear on the screen (1 st analysis question). Have	students, groups, or as a class
them use colored pencils to accomplish this task. Look for students who are thinking deeper about trait	2. Difficult words may include but are not
distribution to use those as examples for the guided discussion.	limited to: inheritance, filial, variation,
• Students answer 2nd analysis question: "Look at the F2 and F3 generation gummy bears from several other	phenotype, and pedigree. Use whiteboard
groups. Based on what you've learned from this activity, what causes the variation in phenotype of offspring?	vocabulary explanations, short practice/example sentences, and
Students share their answers with the group.	synonyms.
	3. Provide alternative simplified analysis
• Teacher : Show students slide 9 and then slide 10 , asking students to explain how slide 9 is related to slide 10.	sentences as needed
Students answer 3rd analysis question: "Given the amount of variation in F2 and F3 gummy bears that you	4. Provide sentence frames to help with
observed, do you think it is possible that all three images show sets of twins? Make a claim about	analyses. Example:
whether or not they are twins. Support your claim with evidence and reasoning from the gummy bear models."	Children inherit (get) approximately percent of from each of their parents.
• Teacher: Pull examples of students' data to guide a summary discussion of how the variation of traits comes from	
inheritance from parents, which is different for each sibling.	
	Possible extensions: 1. If students finish
Student possible wonder/ questions:	this prediction activity early, challenge
Where does genetic variation occur?	them to perform a second prediction of
 Why don't "I" show all the same traits as my parents if I am a "perfect mix"? 	what the offspring bear will look like if
 How much information do we get from our parents and grandparents? 	they use one of their offspring bears and an offspring bear from a different
How much information do we pass on?	group/person. Have them draw the
 Is this how I got from my parents? 	pedigree for this prediction on the back of
Are there traits that are selected for more than others?	their paper.
Important Points:	2. Ask students to explain their reasoning
 We get half of our genetics from mom and half from dad. 	for choosing what their second offspring
 Mom and Dad got half their genetics from their mom and dad. 	bear would look like.
 Not every sibling gets the same genes from each parent. 	

EXPLAIN		
Offspring get traits from their parents through a mix of genetic information.		
1. Connect the gummy bear model to meiosis	Teacher Tips	
 Share with students that what they modeled using gummy bears to show how offspring inherit traits is called "Meiosis." 	If students are not familiar with CER (Claim, Evidence, &	
 Meiosis is how organisms pass traits on to their offspring. Explain that we will explore that cellular process in a future class. 	Reasoning) format, teachers should guide them through each line of the CER document.	
	*Teacher Note: Possibly include process for coming to	
2. Show students the collage (all twins – slide 10)	consensus claim such as this one:	
 Teacher: Ask students to turn #3 on their student worksheet. 	https://www.readwritethink.org/professional- development/strategy-guides/consensus-decision-	
 Restate the guiding question chosen as a class (see Engage section #9) 	making	
(or use this question: "What causes variation between siblings in families?")		
 Instruct students to write the guiding question on #3. 	Access for English Language Learners & Remedial	
	Learners	
3. Student discussion & writing with a partner.	The following sentence frames may support students who struggle to describe their reasoning.	
1. Teacher : Ask partners to establish a claim that answers the guiding question (using their	Example	
experiences and understanding of the activities today).	1. "There is variation between children of the same	
	parents because	
2. Teacher : Establish a consensus claim for the class to write on their paper	2 "There is almost no variation between some shildren	
Highlight some of the claims made by partners during the discussion.	2. "There is almost no variation between some children of the same parent because	
• A consensus claim should look something like the following: "Combining ¹ / ₂ the genetic		
material from the male parent and $\frac{1}{2}$ the genetic material from the female parent causes genetic variation."	3. Each of the pictures shows twins.	
• Students : Write the consensus claim on their worksheet under #3.	Meiosis should be explored in another class period soon after this lesson.	
3. Students: Work as partners to record evidence under #3 on what you have learned today with the twin discussion and gummy bear activity to answer the question.		

ELABORATE

Offspring get traits from their parents through a mix of genetic information.

- 1. **Teacher**: Show the picture of the family of the two women, Lucy and Maria Aylmer (Slides 11 & 12). "How does this picture add to your evidence that they are siblings/twins from the same parents?"
 - Instruct students to add the new evidence to #3.
- Students: With a different partner, argue from the evidence that genetic variation comes from the passing of ½ the genetic material from the male parent and ½ the genetic material from the female parent.
 Add to your evidence/reasoning anything that you learned from your partner that you didn't have in your evidence.
- 3. **Teacher**: Have students return to their original seats. Call on 2-3 students to share one of their pieces of evidence. Use this activity to check that student evidence is accurate.
 - If needed, explain that reasoning is the explanation of how your evidence supports the claim. Explain that it is the science behind the evidence and claim.
- 4. **Students**: On #3 explain how your evidence supports your claim. The reasoning section is where students should have a scientific explanation for the cause and effect of the variation seen in siblings/twins.
- 5. **Teacher**: Check for understanding. End with a whole group discussion about the cause and effect of how siblings/twins receive such different traits and how meiosis is the process that leads to genetic variability.

EVALUATE

Offspring get traits from their parents through a mix of genetic information.

Use the rubric provided to evaluate students' answers to #3 on their papers or have students evaluate each other's worksheets.

POSSIBLE EXTENSION / ALTERNATIVE ADAPTATIONS

- 1. Students can reproduce one of their colored pencil bears (F3) with a neighbor AND predict possible outcomes.
- 2. Students explore genetic recombination and how new genes are formed. See genetic recombination info sheet.
 - a. Explore how students would do the gummy bear activity differently to accommodate homologous recombination?
 - b. Students can explore the concept of genetic recombination and use that data to evaluate cause-and-effect relationships of parent genes to their offspring in the "twin model" activity.
 - c. Students can explore the cause and effect_of genetic recombination and how new gene combinations form by mixing up two small spheres of Play-doh (or beads). They will mix it for 5 seconds and then break it into four equal pieces. They will then roll them into spheres and compare their spheres to other students. (**Possibility to analyze their results and record their data**).
- 3. Gene simulation websites/resources:
 - a. CGS LAB
 - b. EduMedia Heredity
 - c. Legends of Learning
 - d. Build a pigeon (complete folder)

